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Abstract. The connection between phase transitions (6%) and calorimetric glass transitions 
(COTS) is considered, first with reference to second order ms as described by Ehrenfest. then 
by camparison with a rheological approach. This results in connecting the paaition functions 
of the 'ideal' liquid with that of the 'ideal' glass. by means of a ' r d  partition function, 
explicitly depending on the cooling (hating) rate. By requiring the entropy and heat capacity 
at any cooling rate in the rheological model to be positive, it turns out that the CGT s h a r p s  
with decreasing difference belween the two ideal free energies, and not simply with decreasing 
cooling rate. In addition. it is impassible to &e the WO ideal f i e  energies join at abivary 
low cooling rates without singularities, if their difference is non-vanishing at zero temperature. 
If this is not the w e ,  a lower limiting critical cooling raie is predicted, at which a aecondafy (or 
0) relaxation toward the glass becomes a true. m. Under special conditions, the primary (or a) 
relaxation on simulate a true m, in which case one may speak of a 'false' m. A classification 
of glass-forming materials is possible, based on the difference between false m simulating 
first-order ms (class (A) materials), or secondader m (class (B) materials). The rheological 

' . model is also discussed in connection with the mode-coupling theory of the glass transition. 

~~ 

1. Introduction 

The possible linkage between the glass transition (CT) and some kind of phase transition 
(PT) is one of the most debated problems in the theory of liquid and glassy systems. There 
is at present an increasing deal of experimental evidence [l-51 supporting the existence of 
a true (though non-conventional) PT in the undercooled liquid, as predicted by the mode- 
coupling theory [6-111. This FT marks the transition from a liquid phase governed by 
cooperative motions, all related to a single time scale decreasing with temperature, to a 
different. liquid phase, whose behaviour is still ergodic, but essentially due to thermally 
activated processes, and evolving with diffeerent scaling times [12]. The critical temperature 
TMC of this process (MC stands for mode coupling) is in general 1040% higher than 
the temperature Tg around which  the so called 'calorimetric' glass transition (CGT) occurs. 
The latter process is macroscopically marked by the increase of.the shear viscosity up 
to solid-like values, by smoothed discontinuities in the heat capacity, compressibility and 
expansivity,  and^ by the dependence of the whole process on the thermal history of the 
sample. On this basis, the identification of the CGTs with the dynamical pT predicted by 
the mode-coupling theory is quite unlikely [13], but the possible connection between CGTs 
and thermodynamical FTS is still an open question which will be discussed in the present 
paper. Surveys on the same topics have been given by Owens [141, JLkIe [I51 and Sethna 
ef al 1161. 

As opposed to the thermodynamical models suggesting a PT picture for the CGT 116- 
191, the 'rheological' approach [20] puts more emphasis on the divergence of the relaxation 

0953-8984/93/315525+18$07.50 @ 1993 IOP Publishing Ltd 5525 



5526 

times typical of the viscous flow, without special attention to any ‘underlying’ pT. This 
approach points to a purely kinetic picture of the CGT, in which all the relevant phenomena 
can be interpreted as a consequence of the structural mest of the viscous flow, when the 
cotlesponding relaxation time exceeds the measurement time scales. 

In the present paper, we discuss the PT-CGT linkage starting from the rheological 
approach just outlined. First we consider the following question: 

(i) can the CGT be linked to a second-order thermodynamical PT as described by 
Ehrenfest? 

which naturally arises when considering the jumps observed in many cases at the CGT in 
second-order susceptibilities. Arguments for a negative answer are usually found from the 
violation of the Ehrenfest theorems connecting the rate of change of Tc (the PT temperature) 
with pressure, to the discontmuities of the thermal quantities at a second-order FT [Zl, 221. 
Very recently, Hunt [23] has discussed the question (i) in the same context, with special 
attention to the dependence of the CGT temperature T, on the measurement time, which is 
also the starting point of the present paper. However, the negative answer we shall give in 
what follows to question (i) is not based on the Ehrenfest theorems, but on a much more 
elementary argument (see section 2) which, to our knowledge, has never been reported 
explicitly in the preceding literature, apart from a short mention given by ourselves without 
formal details [ZZ]. Fupta and Moyninhan [21] seem to allude to a closely related problem, 
but with different aims and methods. The present approach to question (i) (section 3) will 
also introduce some aspects of the CGT-PT linkage which will be useful for the second part 
of the paper (sections 4-6), where the rheological model is discussed. By the rheological 
model (section 4) we mean a semi-empirical approach to the ‘real’ partition function, which 
includes the cooling-rate effects. The ‘concavity’ of the free energy, which is necessary 
and sufficient for the entropy and heat capacity to be positive, will turn out to be a very 
stringent condition (section 5). In particular, it will be shown that the CCT sharpens with the 
difference in modulus between the ideal-liquid and ideal-glass free energy, and not simply 
with the cooling rate [15,24-261. In addition, if the difference between the ideal-liquid 
and the ideal-glass free energy is non-vanishing for vanishing temperature, the rheological 
model predicts the following alternative: either a true second-order PT occurs at low cooling 
rates, which should describe the secondary ( B )  relaxation, or the secondary relaxation itself 
is absent. In section 6 all these aspects will be compared with recent experimental data 
[24-26]. We also consider the possible coexistence of the true PT with a ‘false’ PT at higher 
temperatures, marked by a fairly abrupt change of the heat capacity, and describing the 
primary (a) relaxation. Finally we discuss the connection and the compatibility between 
the rheological approach and the mode-coupling theory (MCT) of the glass transition. 
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2. Odd-order and even-order phase transitions according to Ehrenfest 

According to the old classification due to Ehrenfest, a PT is only characterized by the 
fact that some derivative of the free energy G is discontinuous at some critical point. To 
avoid irrelevant complications, we shall refer in the following only to jth-order thermal 
susceptibilities, that is, derivatives such as ajG/aTj (which we write as ajG for brevity), 
with a discontinuity at some critical temperature Tc. Implicit in the Ehrenfest classification 
is the possibility of defining a low-temperature and a high-temperature phase, in equilibrium 
at Tc, each characterized by its own free energy GL and GH respectively. By distinguishing 
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between left-hand side (-) and right-hand side (+) limits, the discontinuity condition thus 
reads 

Iim ajcH(T) = lim ajcL(T) ( j ~ ~ <  n)  . .  

(1) 
T-t 7: T+T; 

lim BflGH(T) # lim B"GL(T). 
T- T$ T+TG- 

If one of the two phases (or both) can be physically extended, as a metustable state, in the 
region where the other is stable, we say that the two phases coexisf. In this case, a second 
condition is to be accounted for defining GL and GH as the stable free energies for T < Tc 
and T > Tc respectively: 

GL(T) < GH(T)  

GL(T)  > G H ( T )  

From the conditions (1) and (2) it readily follows that 

(ii) only if n in (1) is odd can T, be an internal point of the interval in which the two 
phases coexist. 

In fact, from condition (1) one should write AG = GL - G i  = ' A ( T . -  T$" ( A  is a 
constant), in a sufficiently small open interval containing T,, but from condition (Z), AG 
must change sign when. crossing T,, so that n is necessarily odd. Hence the qualitative 
feature which distinguishes .odd from even-order PTs as described by Ehrenfest is that the 
critical temperature of the latter is necessarily a border point of the coexistence interval of 
the two phases. In more physical language, 

for T < T, (if the two phases coexist below T,) 

for T > Tc (if the two phases coexist above Tc). 
(2) 

(ii) if n is even, then one of the two phases cannot be physically extended across T,. 

3. Calorimetric glass transition and second-order phase transitions following Ehrenfest 

The special feature which we need to stress about the CGT is that by changing the cooling 
rate Q, it is possible to shift the glass-transition temperature T,. In fact, it is experimentally 
shown that T, increases logarithmically with the cooling rate. Two functional forms have 
been suggested: in [27] 

Tg(4?) = + c l n ( Q ~ / Q ) ]  (3) 

and in [24] 

T&) = T," -!- TA/ln(QM/Q) (4) 

which we shall discuss in what follows.. Equations (3) and (4) should not be extended 
to Q = 0, since a finite lower limiting cooling rate Q, will certainly exist, larger than 
or equal to the critical cooling rate below which the system crystallizes. However, from 
(3) and (4) one must conclude that the glassy and the liquid 'phases' do coexist in a 
temperature interval at least as large as that spanned by T,(Q), when Q vqies in the range 
of experimentally accessible values. Sometimes it .is assumed for theoretical speculations 
that the (undercooled) liquid and the glass ideally coexist in the whole interval between the 
Kauzmann temperature TK and the melting temperature Tm. The argument in section 2 leads 
one to exclude the possibility that any even-order IT can describe the CGT, if the critical 
temperature has to fall inside this coexistence interval. Some consequences are as follows: 
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(a) In any model describing the CGT as a second-order FT as described by Ehrenfest the 
critical temperature T,  coincides necessarily with the limiting value Tg(Q,,J. 

In fact only under this condition is one granted that Tc is at the border of the liquid-glass 
coexistence interval, as required by the even-order condition. According to this argument 

(b) it is quite misleading to support the PT picture for CGTs with the experimental 
evidence that many glass formers exhibit a ‘discontinuity’ in the heat capacity, as expected 
from a second-order PT. 

If one refers to an experimentally observed GT, the cooling rate Qmp falls manifestly between 
Qm and QM, so that the critical temperature at which the heat capacity exhibits a jump 
certainly does fall inside the liquid-glass coexistence interval. This however excludes any 
even-order PT. 

A further consequence of statements (ii) and (iii) is that 

(c) the only way to connect a CGT occurring at a non-critical cooling rate with a 
thermodynamical PT is to assume that the latter is odd order. 

It is worth stressing that the present criticism of the linkage between C G n  and 
thermodynamical FTS has a common aspect with JacHe’s criticism 1131 concerning the 
dynamical PT predicted by MCT. Jn,,both cases, the crucial point is the cooling rate. In 
particular, Jacickle points out that MCT is not able to account for cooling-rate effects. In 
the conclusive part of the paper, we will show that the rheological model of the COT is 
compatible’ with MCT, so both pictures can be used in parallel, to fill in the gap between the 
rheological effects and MCT. 

4. A ‘rheological’ picture of the undercooled melt 

In the next part of the paper we will attempt to formulate a model, based on the rheological 
picture of the CGT, in which the cooling-rate effects are included ab initio. The results will 
be used both to support the applicability of the model itself to realistic situations, and to 
make further comparisons with the FT picture. 

In the rheological approach to the CGT the relevant quantity in the problem is the ratio 
(whose reciprocal is denoted as the Deborah number [28] 

-S = G “ / T v i s c  = AT/QGsc (5) 

where imw is the measurement time and r,i,, is the relaxation time for the viscous flow. The 
second equation (5) is obtained for a specific process, that is, a cooling (heating) occurring 
at a mean rate Q = AT/rmw, AT being thefnite change of temperature occurring in the 
real process of coolinglheating [15]. We stress that, if T( t )  describes a monotonic change of 
the temperature T with the time, than Q = dT/dt can be expressed as an explicit function 
of T itself. Hence (5 )  is rather general, though we will refer in the next only to processes at 
constant cooling rate. The ratio U is a measure of the ergodicity of the system, with respect 
to the slow degrees of freedom which describe the viscous flow of the liquid U = 00 

means that the system is ergodic (ideal liquid) and the free energy is given by an average 
over all modes. In contrast, U = 0 means that the slow degrees of freedom are completely 
‘frozen in’ (ideal glass) and the free energy is obtained by a non-ergodic thermal average, 
performed only over the ‘fast’ modes (typically, the oscillatory motions), by taking fixed 
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values for the slow ones [15,29]. A possible way to connect these two extreme situations, 
for any value of U, is to write the ‘real’ Q-dependent partition function as 

(p = ~ / K T ) ,  where (9.) and {%} are suitable Lagrangian parameters and velocities 
respectively, split into fast (a = 0 and slow (a = s) components, which determine the 
energy H. OF is an elementary volume of the fast-mode phase space, and the function Go 
satisfies the followmg conditions: 

The first relation (6b) accounts for the non-ergodic limit, in which the slow modes are 
frozen in a single glassy configuration ( X & ,  with zero velocity. The second relation (6b) 
accounts for the ergodic limit in which the whole phase space of the slow modes becomes 
available with uniform probability (OS is an elementary volume of the ‘slow’ phase space). 
The basic assumption underlying (6) is that even in a non-equilibrium process such as that 
envisaged, a partition function can be defined by integration over the phase space, provided 
that a suitable weighting factor depending on the thermal process is introduced. Probably, 
this assumption should not be applied four court to all non-equilibrium processes, but it 
looks reasonable in a case such as the CGT, in which the temperature is operatively defined 
during all the process, and thermal equilibrium is certainly achieved (on the measurement 
time scale) for both the initial and final states. From (5 )  and (6a) one should notice that on 
the temperature scale the ‘sharpness’ of the CGT is greatly influenced by the rate of change 
of s,,iSc with the temperature. In particular it is possible to deduce (3) and (4) from the 
expressions 

(74  . - ToeCPEm) 
WSE - 

(j3 = ~ / K T ) ,  and 

Tvix = 70 exP[TA/(T - T31 (7b) 

respectively [15,23,24]. (7a) is experimentally verified for most glass-forming materials, 
close enough to the CGT temperature T, 1301, while (7b), denoted the Vogel-Fulcher law, is 
more controversial. For example, Bruning and Samwer 1241 stress that the best-fit value T,” 
in (7b), estimated from the~experimental data on T,(Q) (4b), turns out to be significantly 
higher than the same value best fitted to the viscosity data. In any case, (4b) introduces 
a finite-temperature divergence of some characteristk time’scale, which is suggestive of a 
possible critical behaviour at For the rheological picture in itself, the choice between 
(4a, 7 a )  and (4b, 7b) is not crucial, and can be assumed as an external input. 

In order to evaluate the integral over the slow modes, we introduce the total number of 
‘slow’ states 

s :  

which contribute to the thermal average for a given value of U. We also define the average 
number m, of states per particle (in a total number of N). According to (6b), M,, ranges 
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between MO = 1 (the ideal glass) and a maximum value M, for the ideal liquid. As 
discussed elsewhere [29], one expects the liquid energy to be the sum of a fast- and a 
slow-mode contribution 
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ff = Hr(Iqr1, IvrD + ff,((qsI, I%HT) (9) 

where the latter may depend explicitly on T. In fact, the analogy with the Born- 
Oppenheimer approximation suggests that the slow effective Hamiltonian Hs does also 
depend on the thermal average ( H f j ~  performed over the fast modes. After multiplying and 
dividing (6a) by Mu, one notices that G,(. . .)/M, is a probability distribution, normalized 
to unity. Hence a certain value H,*(T,u) will exist such that, on account of (9), (6a) 
becomes 

Recalling that the integral in (lo), multiplied by exp[-pH,((X,], O l T ) ] ,  coincides with the 
ideal-glass partition function 20 (6b). we can take the logarithm of (lo), divide it by the 
number N of particles, and then use the second equation (8) to write the Helmholtz free 
energy per particle 

@ , = ~ ~ + A @ , = ~ ~ + h ~ ( T , u ) - h , ( { X , ] , 0 ( T ) - ~ T 1 n [ m , ( u ) ]  (11) 

where @O is the ideal-glass free energy and h,, hf are energies per particle. The usefulness 
of (11) is related to the possibility that the mean number m, of slow states per particle is 
finite and relatively small in the thermodynamical limit. Otherwise the quantity A@< would 
result from the (finite) difference of two divergingly large terms, and (11) would provide 
an unsuitable representation. Assumins indistinguishable particles, which is the correct 
position, even in the non-degenerate limit, it easy to see that the existence of an upper 
limiting value in the single-particle energy is the crucial condition to avoid the divergence 
of the number of states per particle. Indeed, an upper limiting value for the slow-mode 
energy (2 0.16 eV in Se) has been introduced even for the ideal liquid [31], so we may 
expect m,(w)  i 00. In any case, for the present purposes we need only to discuss (11) 
close to the CGT point, where m,(u)  is expected to be not only finite, but also close to unity 
(see (6b)). 

5. The rheological model at the calorimetric glass transition 

In (11) it is possible to distlnguish between the contribution 

Ahs = h,l(T, g) - h,((X,I, OIT) (12) 

and the contribution -~Tln(m,). The quantity (12) is a sort of local energy carried by the 
slow modes, and we expect it to be positive at any temperature (see below). The term 'local' 
is used here to indicate that Ah, is only related to the shape of the probability distribution 
Gv(. . .)/Mu, which describes the local freezing in of the slow motions, as opposed to the 
quantity MO which describes the global shrinking of the phase-space volume available. 
The latter effect (which is essentially entropic) is accounted for by the term -KT ln(m,) 
in (11). This distinction suggests further insights into the rheological behaviour of the 
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system, described by the function Go. For example, we may assume that close to the CGT 
point the quantity Mu numerates the glassy configurations [X,) which can be explored 
during the measurement time, while the probability density G,,(. . .)/MO describes the 
residual freezing in of the slow modes, which can still relax after one or a few glassy 
configuraQons remain available. In this way the rheological model can account for the so 
called a relaxation (M, + 1, -eTln(m,) + 0), followed by the so called B relaxation 
(G,,(. . .)/MO -+ S((q,) - [ X g J ) 8 ( { u s ) ) ) ,  which concludes the stabilization process. One 
will then identify two characteristic temperatures T, > Tp (both in general depending on 
the cooling rate), marking the vanishing of -KT ln(m), and 4hs respectively: 

@,, = 00 + Ah,(u T )  - KT ln[m,(u)] for T > Tc (W 
Qc @o + 4hs(u, T )  for Tg < T < Ta (136) 

Qo @O for T < T,. (13~) 

Whether Te and Tp are shillply defined or not is not a crucial problem, provided that they 
have, as we assume, an operative definition (see also the appendix). Accordingly, the 
condition Mu = 1 for the CI relaxation can be replaced by the condition that M,, decreases 
rapidly to values of the order of unity below Ta, being much larger above. The positiveness 
of Ah, can be justified by taking a Gaussian Go(. . . ) /M,  around each glassy configuration: 

where A,,(u)  are D x D positive definite matrices (D is the dhension of the (4) space), 
whose eigenvalues tends to zero (infinity) for U going to infinity (zero) (see (6b)). We have 
removed the index s from the variables for the sake of brevity. By assuming that [X& is a 
local-equilibrium configuration for the energy h,, we may expand h, close to the GT point 
as 

h, - x,ir,(q - X,J + ( U I ~ J U I  (15) 

where r,,,,(T) are, in turn, positive definite matrices. Insemng (14) and (15) into (6a) for 
MO -+ 1, it follows that 

Ah, % ~ K T  In[det(A, + prq)det(A, + pr,)/detA,detA,] (16) 

which is manifestly positive. (13b), with the positiveness of Ahs (16). implies that 
@,,(T) =- @o(T) for T < 7’*. However one also expects Qp,(T) Z QP,(T) < @o(T) in the 
high-temperature limit, in which U is very large and the ideal-liquid phase is certainly stable 
against any other phase (including the crystalline one). Hence there will be a temperature 
%(U) > T, at which the ‘real’ free energy @,,(T) crosses the ideal-glass free energy @&P) 
and becomes larger than @o(T) at lower temperatures. One may again use (14) in (lo), 
by taking the high-temperature limit, which leads to expand the exponentials in (14) in a 
power series. At the first order one verifies that this yields apositive contribute to the free 
energy of the ideal liquid, so that O,(T) > @,(T) in the high-temperature limit. All these 
features are sketched in figure 1, where it is seen that the passage from the two freeenergy 
curves representing the ideal liquid (QPm(T))  and the ideal glass (@o(T)) is far from trivial 
and does not display any close resemblance to a thermodynamical PT. In particular, in the 
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T 
Figure 1. Sketch of the real free enew Qr (fine curve), interpolating the two limiting functions 
Q,, @ o  (bold curves) in the cases Qm < 00 (a), and 0, > 00 (b). Ail the functions satisfy 
the conditions (17). 

interval Tp-To the real system looks, unstable against the ideal glass (figure I(a)), because 
4r ( T )  > @o(T), while at high temperatures, the real system looks unstable against the ideal 
liquid (figure I@)), because @,,(T) > Ow@). In both cases the notion of ‘instability’ is 
of course misleading, since the ‘excess’ free energy in the present model is a cooling-rate 
effect and can be removed at any temperature by a suitable choice of the cooling process. 

Some relevant consequences for the rheological model follow from requiring that @,(T) 
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T 
Figure-2. Two possible cases for the limiting free energies: (a) 0- (bold curve) crosses 00 
(fine curve) at a point T,,,: (b) am and @DO m tangential at point Toms. Also included in (b) 
is the case am c 00 everywhere (Twns now indicates the point at which the two f r e  energies 
are closest to each other). The broken line divides the region (0 in which 1 %  - 001 increases 
with T ,  from that (10 in which IOm -'%I decreases with T .  

behaves as a 'concave' function of T, that is, 

a@,/aT < 0 (positiveness of the entropy) 

az@,/aTz i 0 (positiveness of the heat capacity). (17) 
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This is assumed to hold even for the limiting values of U ,  so that the conditions (17) apply 
CO @&) and @,(T) as well. Since Qo(T) and Qm(T) must be connected by a function 
Q,(T) satisfying (17), it can be argued (see the appendix) that the temperature interval 
marking the passage from Oo(T) to a&"), which we call the CGT interval, increases as 
the square root of lA@I = IO, - Qol, calculated in some internal point of the interval. 
However, the CGT interval determines the sharpness of the CGT, so that when lAQ(T)l 
increases with T (zone (I) in figure 2), the CGT tends to become sharper and sharper with 
decreasing cooling rate, since the decrease of the cooling rate shifts the CGT interval to 
lower values. Similarly, when lAQ(T)I decreases with T (zone (II) in figure 2), the CGT 
tends to sharpen when the cooling rate increases. 

The case (I) (IAQ(T)l increasing with T )  seems to be the rule, from the experimental 
viewpoint (see, for example, [15,23,24]). However, it is difficult to decide whether this 
happens because (I) holds at all remperatures, or because the cooling rates corresponding 
to (11) (lAQ(T)I decreasing with T )  are not accessible in practice (one should not forget 
that a minimum cooling rate is necessary to avoid crystallization). In addition, there are 
old [E] and very recent [26] experimental results (which we discuss below), supporting 
the possibility of the opposite behaviour (U), hence we will discuss some theoretical 
consequences of combining the two cases, (I) and (U), as sketched in figure 2. In particular 
we can prove a fairly reasonably (but not so easy to show) aspect of the CGT, that is 

(iv) the sharpest CGT occurs at the temperature at which the two ideal free energies Ow 
and 

In fact, let there exist a temperature T,,,, (independent of the cooling rate) such that 
Qw(Zmrs) = @&&) (figure 2(a)), and let QcmSs be the cooling rate which yields 
T, = T,,, (T, being the measured CGT temperature, which can be identified with the middle 
point of the CGT interval, for the present aims). From the arguments above, for Q z Quos, 
the CGT interval decreases with Q (case (I)), while for Q < Q,,,, the CGT interval increuses 
with Q (case (II)). Hence the sharpest CGT should occur at T, = T,,,,, which proves the 
assertion (iv). Furthermore, the square-root dependence on lA@(T)I suggests that the CGT 
interval should vanish for Q = Quos, but in this case the situation sketched in figure 2(a) 
would correspond to a first-order PT as described by Ehrenfest, since A@(?') changes sign 
at T,,,,. In figure 2(b) the ideal-glass free energy is always larger than that of the ideal 
liquid, except at the tangent point Tmg (if any), where Om(Tmn,) = Qo(Tmg). The same 
arguments as used for figure 2(a) can be applied to the present case too, in order to prove 
the assertion (iv). In particular, for the optimal cooling rate QWn, such that Tg = Tons, 
the CGT is as similar as possible to. a second-order PT as described by Erhenfest, if one 
limits the analysis to the heat capacity behaviour. In fact the difference QP,(T) - Qo(T) is 
proportional to (T - Ton,)2, around Tgng, which gives a discontinuity of the heat capacity. 
Of course, there is no real underlying PT, since the condition 0, < Qo, even below Tmn,. 
makes it clear that the transition does not involve any 'equilibrium' process connecting the 
two phases, as already stressed in section 3. 

The rheological model has other relevant consequences if the cooling rates can be chosen 
so small as to shift the CGT below.T,,, (in figure 2(a)), or below Tans (in figure 2(b)). In the 
latter case, for the sake of brevity we indicate with the same symbol T,,, the temperature 
at which 0, and QO are as close as possible, no matter if they are really tangent or 
not. The important point is that if the difference I@&) - Qpo(T)I is non-vanishing at 
zero temperature, there will certainly be a critical cooling rate Qc below which the real 
free energy QP,(T) cannot connect Ow and a0 without displaying singularities, or without 
violating one of the two conditions (17). For the case in figure 2(a), the proof is elementary. 

L Ferrari and G Russq 

are as close as possible. 
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If Qm(0) = Qo(0) > 0, it is possible to find a strictly positive temperature Tc such that 
@,(T,) = Qo(0). Now, for the CGT.tO occur below Tcrors in figure 2(a), there must exist 
a temperature T, at which Qm(Tm) = Q,,(T,) (see figure l(b)). In fact we have already 
shown that O,(T) > Q,(T) at high temperature, while now (P,(T) must approach Qo(T) 
in a region where the latter is lower than Qm(T). It is clear that for cooling rates below the 
critical value Q,, such that T, = Tc, the real free energy Qc cannot join the ideal-glass limit 
without decreasing with decreasing T, in contrast with thefirst condition (17). For the case 
in figure 2(b),  the proof is based on the violation of the second condition (17), and looks a 
little less elementary. The mathematical details for the calculation of T, and Q, are therefore 
given in the appendix. The conclusion is that, avoiding a negative measured entropy or 
heat capacity in the rheological model, leads one to consider the following alternatives: 

(v) there is a temperature TPI. > T,, below which the ideal liquid phase, though 
mathematically sound, does not make physical sense; or 

(vi) the p-relaxation temperature T,(Q) (13) becomes negative for Q.<  Q,, so that Q,, 
never joins Qpo for Q < Qc. 

6. Comparison with experimental data and with the mode-coupling theory 

The possibility (v) is consistent with a second-order PT in the modem sense, even though it 
is not possible, in the present context, to be more specific about its features, which depend 
on the details of the function Go (6)., From the preceding analysis, we may try to separatk 
gl&s formers of class (A), referring to figure 2(a), from those of class (B), referring to 
figure 2(b). For the former one expect a ‘false’ first-order PT from liquid to glass, at high 
cooling rates (high temperature) and a true second-order PT (in the modern sense) at’low 
cooling rates (low temperatures). For systems of class (B) the true PT is less distinguishable 
from the ‘false’ one, since the latter too looks like a second-order PT. However, for systems 
of class (B) there could be a remarkable possibility. If Qraog and Qtl. are not too different, 
one could identify, at the same cooling rate, Qexp = QPI. 2 Q,,,,, a smoothed but well 
displayed jump in the heat capacity-both around Tbng (the false PT) and the me p7, at a 
slightly lower temperature,Ttl.. Hence for class (B) glass formers, it is possible to reconcile 
the kinetic picture of the CGT [ZCrZZ] with the PT picture [16-19]. The former should be 
true for the higher-temperature process which yields the heat-capacity jumps. For practical 
purposes, this could be identified with the pr imly  (or 01) relaxation. The PT picture should 
instead apply to the lower-temperature process which could be identified with the secondary 
(or ,9) relaxation, leading the system to achieve a complete stabilization. Relevant to these 
points are the experimental results obtained by Briining and Samwer 1241, for different 
glass-forming samples. The width AT, of the.GT interval is shown to scale linearly with 
In Q, that is 

AT,(Q) = AT0 WQ/Qd Q > Qo. (18) 

We can now connect (7b) and (18) to the expression 

[AT,(Tg)I2 IAQ(Tg)ISIQoVg) - QmfTg)l (1% 

as obtained in the appendix (A4). Indeed, (A4) connects a lower limiting value of AT, to 
IAQI calculated at a suitable internal point of the CGT interval. However we may reasonably 
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expect that the square-root dependence (19) is correct at least for small CGT intervals. From 
(7b), (IS) and (19) it follows that 
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A@(T) C( [ln(QdQo) - TA/(T - T,0)I2 

TU, = T," f TA/ln(QM/Qo) 

QOV) - @ P , ( ~ )  a T ~ ( T  - T ~ ~ ~ ) ~ / ( T ~ ~ ~  - Q4. 

(7-0) 

on replacing Tg with any value T of the temperature. Close to the value 

(21) 

at which the right-hand side of (20) vanishes, one gets 

(22) 

Thus we may conclude that the glass formers considered by Briining and Samwer are likely 
to belong to class (B), with 00 and QP, tangent at the temperature TQne In the case of 
B2O3 (for which the data are reported with the least uncertainty) one gets, for example 

TQn, - T," Z 18 f 5K. (23) 

If T," in (76) (2 491 Kin B2O3) corresponds to some critical process, a reasonable possibility 
is to take T: = T, (the true PT temperature) in which case (23) is a practical realization of 
our guess that thefalse PT temperature is slightly higher than T~T.  The optimal cooling rate 
Qtm, at which T, = Tan, follows from (18), which yields Q,, = Qo) Z 10-s.3 K s-' in 
B2O3). The only point of disagreement between the rheological model and the conclusions 
drawn by Bruning and Samwer from their data is that the former predicts AT, increasing 
again for Q c Qo (as if, for example, the logarithm in (18) were replaced by its modulus). 
Instead, Bruning and Samwer suggest the possibility that AT, 'saturates' to a lower limiting 
value (not necessarily zero), and becqmes independent of the cooling rate. An experimental 
answer on this point would be interesting, but it is not clear whether crystallization can be 
avoided or not with cooling rates as low as IOW3 K s-' (in B20,). However, let us recall 
the measurements of Thomas and Parks [U], on account of the comments of Rajeswari and 
Raychaudhuri [26]. In [U] it is shown that the value of AT, obtained from heat capacity 
measurements on B2O3 by reheating after slow cooling or simply by cooling, is larger than 
AT, obtained by reheating after fast cooling (figure 3(a)). In [26] it is argued that the 
heat-capacity measurement obtained by cooling is the slowest one, so that figure 3(a)  gives 
support to the possibility that in B203 the GT interval AT, increases again with decreasing 
cooling rate, after having reached a minimum. Even more suggestive of this possibility are 
the data, reported in [26], on the heat-capacity measurements in glycerol (see figure 3(b)). It 
is clearly seen that the value of AT, decreases, reaches a minimum, then increases again, for 
decreasing cooling rates, that is, for measurements times increasing from about 6 x low4 s 
to about 4 x IO3 s. From figure 3(b), we have derived a logarithmic relation between tmvs 

and AT, (that is, between Q and ATg): 

AT, = ST,] ln(r,,&To)I +AT,, (24) 

where in glycerol, 6Tg % 1.55 K, AT,,i, Z 24.44 K, TO Z 1.53 s. Of course, the quantitative 
estimate of the parameters entering (24) has a certain degree of arbitrariness, depending on 
the criterion adopted to define the GT interval (see figure 3). However, our guess that 
the dependence on Q (or tmX) occurs via the modulus of the logarithm is indeed well 
supported. An additional feature, contrasting with the case of BzOs [24], is the existence 
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Figure 3. Heat capacity in E203 (a) and in glycerol (b), taken from 1251 and [26] respectively. 
Double headed arrows indicate the CT intervals. To derive the parameterin (Za), the measurement 
times have been estimated as the reciprocnls of the frequencies reported in (b), from AC 

calorimetq. The measurement time for the pure cooling process (filled triangles) is reported in 
1261 as 4 x IO3 s. 

of a minimum GT integral AT,,, which indicates that the ideal free energies in glycerol 
should never be tangent (see the lower bold curve in figure 2(6)). 

Coming back to [24], we can conclude that the application of the rheological model to 
the data reported therein leads to a fairly general conclusion: the false PT in B203 looks 
like a second-order PT as described by Ehrenfest, as expected for class (B) materials, while 
the true PT, though very close to the false one on the temperature scale, can be only ideally 
attained, since from (7b) T, = T j  means that Q = 0. 

The possibility (vi) does not feequire (but does not exclude) any underlying PT. It simply 
suggests that some glass formers could have no secondary (or B )  relaxation if the cooling 
rate is too small. In this case the glass could be cooled down to arbitrary low temperatures, 
after freezing in a single glassy configuration (primarily or 01 relaxation), without complete 
arrest of the residual slow modes. The best candidates for this class, which we denote 
as (C), should be the silicates, (and in particular SiOZ), which do not display j3 relaxation 
in ordinary conditions [32]. According to the rheological model, however, the absence of 

~ 

~ 
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6 relaxation should also correspond to particularly slow processes of cooling, so that one 
expects the silicates to be very gwd glass formers, which tend to glassify with very small 
cooling rates in ordinary condition. This is indeed observed experimentally. 

In order to discuss the compatibility of the rheological model with M a ,  we come back 
to (6). These equations postulate that the phase space of the slow degrees of freedom is not 
equiprobably accessible, except for diverging measurement time, and that the non-uniform 
occupancy of this space can be accounted for by a weighting function Go, depending 
only on the reciprocal Deborah number (5). It is this function which contains all the 
dynamical information, and is thereby determined by the specific dynamical model (such 
as the MCT) chosen to describe the liquid phase. In particular, two effects are expected 
from the application of  MCT to the rheological model. According to Richert and B&ler 
[33] and Rossler [34], the critical temperature TMC in MCT (which does not depend on the 
cooling rate) should mark the transition of the viscous time scale T~~~~ from (7b) at T > TMc 
to (7a) for T < TMC, so that one expects a similar change to reflect on Go through the 
definition (5) .  Another possible effect is related to the transition from a single scaling law 
ruling all relaxation processes (T z TMC), to a regime of different scaling times (T c TMc) 
for different classes of processes [12]. In the rheological model, the latter effect can be 
accounted for by partitioning the phase space of the slow degrees of freedom into different 
subspaces, each referring to the relaxation process (or class of relaxation process) whose 
scaling times rvjsc, T', T" . . . will split from one another below the critical temperature. 
Assuming for simplicity that those subspaces are non-intersecting, one can associate with 
each of them a weighting function of the type (6), and take for G, the product of those 
functions. In summary, from MCT one expects that equations (6) hold for T > TMC, with a 
single functional form and with a single time scale ~ " j ~  given by (76). On the other hand, 
for T < TMC, one expects a product G,G,,G,,, . . . of several functions, each referring to a 
subspace of the slow degrees of freedom, in which the degree of ergodicity is marked by 
U' = T,,,~&'. U" = q,,,/t", . . ., in addition to the fundamental ratio U (5) .  with 7,j,, now 
given by (7a). In  this case, one expects many CGT temperatures T ,  T I ,  Tg, . . ,, depending 
on the specific processes observed. It should be clear from the preceding discussion that the 
COT and the PT predicted by M a  are quite different, albeit quite compatible processes. If the 
cooling rate is large enough, however, one may expect that the rise of the CGT temperature 
and the broadening of the CGT intergal lead to the critical temperature TMC being included 
in the CGT interval itself. Hence for the two processes to be observed separately on the 
same temperature scale, one needs in general sufficiently low cooling rates. 
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7. Conclusions 

The aim of this paper is to discuss the long-standing problem of the CGT-pT linkage from 
the rheological viewpoint. First we have made reference to the Ehrenfest classification, not 
because  of its relevance for a modern approach to the PTs, but because a certain deal of 
confusion is still present, concerning the experimental 'resemblance' of the CGT to a second- 
order pT as described by Ehrenfest. 0.ne of the relevant points of the present paper is to stress 
how ambiguous and misleading it could be to take this resemblance too seriously (statement 
(b)). As a general message, the paper shows that merely in the framework of Ehrenfest's 
classification, one should be very careful in 'extrapolating' the behaviour of one phase in 
the stability region of another phase;and then defining the 'jump' of any thermodynamical 
quantity F as the difference AF = FL - FH. Even-order PTs are examples in which AG 
(the jump of the free energy) looks mathematically innocuous, but the above-mentioned 
procedure is completely wrong. 
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The second part of the paper illustrates the rheological model' and some of its 
consequences. The approach is quite descriptive and phenomenological. The form assumed 
in (6) is a reasonable way to'interpolate two limiting cases (the ideal liquid and the ideal 
glass) with a panition.function depending on the reciprocal Deborah number (5). The 
special form (14) of the interpolating function G, is  suggested by the phenomenological 
evidence that 01 and ,5' relaxations are distinct processes, while the choice of a Gaussian 
shape for the probability distribution of the slow modes follows from a standard procedure 
in most statistical problems. The concavity conditions (17) are thus the only first-principle 
ingredients in the model. It is worth stressing that it is .only conditions (17) which are 
crucial for the results obtained. 

A first non-trivial result is the relationship between the CGT sharpness and the cooling 
rate. One might suppose that the observed sharpening of the CGT with decreasing cooling 
rates [U] provides support for the existence of an underlying PT. In fact the decrease 
of the cooling rate makes the CGT closer and closer to an equilibrium process, which 
simultaneously becomes more and more 'critical' (sharp). This might suggest the wrong 
conclusion that at a lower limiting cooling rate the GT must necessarily become a true, sharp 
m, and that the smoothness of the CGT is simply a non-equilibrium.effect. In contrast, the 
rheological picture indicates that the CGT tends to sharpen not directly with the cooling 
rate, but with the difference between the ideal free energies. Hence the CGT will sharpen 
with decreasing cooling rates, in the region (I) (figure 2) where that difference increases in 
modulus with the temperature, but it will sharpen with increasing cooling rates in the region 
(U) (figure 2) where the difference decreases in modulus with the temperature. This means 
that in the rheological model the abrupt change of, say, the heat capacity, is not to be taken 
as an indication that the CCT is very close to an equilibrium process, but simply that the 
ideal freeenergies are .very close at T,. Recent 124,261 and less recent [25] experimental 
data seem to point to the same direction, in Stressing thai 'the relation between ATg and the 
cooling rate could be not as elementary as  the assumption 'increasing sharpness = increasing 
equilibrium' would suggest (see figure 3 and (24)). Numerical simulation could provide 
significant insights on the dependence of Ts and ATZP,on the cooling rate. At present, we 
recall the results of 1351, where the problem is considered for Ts, and.for other relevant 
structural parameters, but without explicit reference to ATs. 

The second non-trivial result which follows from the rheological model is the alternative 
between (v) a true m at low cooling rates, that is, below T,,,, or T,,,, and (vi) the 
absence of the ,5' relaxation, when lQm(0) - @o(O)j ,> 0. Again, the crucial point here 
are the conditions (17), which prevent the CGT occurring at too low temperatures, without 
singularities. A remarkable possibility is that a fairly sharp CGT, reminiscent of a second 
order PT as described by Ehrenfest (false PT), can be observed in parallel with a true second- 
order PT, at a slightly lower temperature. For this to occur, the system must be of class 
(B), that is, it must behave as in figure 2(b), with @-(Tang) = Opo(T,,,) (which makes 
it possible to realize the steepest jump in the heat capacity), and the optimal cooling rate 
Qmg, for which Tg "= Tms, must be comparable with the critical cooling rate Qpr at which 
T, is equal to the critical temperature T ~ T  of the true m. This description supports both 
the arguments against the GT-PT linkage, and those in favour of it, provided the former are 
referred to the 01 relaxation, "d the latter to the f i  relaxation. 

Two other classes of systems have been identified, one of which, denoted as (A), 
corresponds to figure 2(a), and differs from class (B) in that the higher-temperature transition 
is reminiscent of a first-order PT. To the authors' knowledge, there is not at present any 
clear experimental evidence for the existence of such systems. 

The third class, denoted as (C), may correspond to figure 2(a) or 2(b). Systems 
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belonging to this category should not display fi  relaxation at low cooling rates. It is argued 
that the silicates could be good candidates for class (C). 

We have also discussed the compatibility between the rheological model and MCT, by 
stressing what influence MCT should have on the occupancy function (6). 

As a concluding remark, concerning the true PT predicted by the rheological model, 
we stress that the existence of a critical temperature now follows from the existence of a 
critical cooling rate. Hence the special feature marking the difference between 'rheological' 
PT discussed in the present paper, and the conventional equilibrium PTs, is the possibility 
that the true order parameter is the cooling rate. This may open new perspectives to the 
study of non-equilibrium phase Wansitions, which have not been explored so far. 
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Appendix 

In this appendix we first illustrate the relation between the sharpness of the CCT and 
the difference (in modulus) between the two ideal free energies. We assume as a 
phenomenological input that a CGT interval can be operatlvely defined, in which the real free 
energy Oo(T) passes from values very close to that of the ideal liquid (Qm(T)), to values 
very close to that of the ideal glass (Qo(T)). It follows that two temperatures T," > Ti 
can be operatively defined (see figure AI), at which Op,(T) = Oa(T)  for T > T," and 
Qn(T)  = @,,( t )  for T e T;. The width of the GT interval will be given by T," - T;. 
In the case sketched in figure Al, the transition IS assumed to occur in a region in which 
Qa(T) c Oo(T),  while in figure A1 the opposite case Oa(T)  > @o(T) is taken into 
account. The cases in which the GT 'starts' as in figure AI (at higher temperature) and 
'ends' as figure AI (at lower temperatures) simply correspond to the 'optimal' cooling rate, 
that is, to the sharpest GT. Let us consider the two linear functions Sa(T) and So(T),  
representing the tangent lines to Q,(T) and Opo(T) at the points Tf and T; respectively: 

The concavity conditions (17) imply necessarily that Q,(T) < Sa(T) for T < T," and 
a&") < So(T)  for T > T;. This means that T: < T; and T& > T," for the two 
temperatures T; and TG at which the straight lines in figure (Ala) and (6) intersect Oo(T) 
and Qm(T) respectively. Then it follows that 

T: - T$ > 7," - TC (figure Al) ( A b )  

and 

T," - T; > T; - T; (figure Ai). 
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Of course, we are concerned with relatively narrow CGT intervals, so that we may reasonably 
approximate Qo(T) and O,(T) by the quadratic forms 

Q,(T) E Q,(Tl) - A,(T - Tc) - iB,(T -TO’)’ (A3d 

(A3b) * 2  Oo(T) G Qo(T:) - Ao(T - T z )  - $Bo(T - T,) 

where the A and B coefficients are positive on account of (17). The conditions S,(T,) = 
Opo(TJ, S,(T&) = Q,(Tz), with the aid of (AI) and (A2), yield, from (A3) 

T: - T: = [[Opo(T0*) - Op,(T,)1/E,]1’2 

TG - T; = [[Om(Tz)  - OO(T~)]/BO]”~ 

(-444 

(A4b) 

showing that the lower limiting value for the GT interval (AZ), in both cases sketched in 
figure AI, increases with the square rool of the difference in modulus between the two 
ideal free energies, calculated in a point internal to the GT interval. 

0 T 

T 
Figure Al. The same as in figure I ,  with the stmight lines S, and So (AI)  replacing Qo. 
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The second point to be discussed in the present appendix is the impossibility for OP,(T) 
to approach Oo(T),  in the case in figure 2@), at too low temperatures (too low cooling 
rates), if Oo(0) - Op,(0) =- 0. Once can again make use of figure Al,  by setting T; = 0, 
and by noticing that in this case the temperature TZ is a lower limiting value, below which it 
is impossible for O,(T) to approach @o(T)  starting from values arbitrary close to O-(T), 
without violating the second condition (17). Hence the critical temperature T, which we 
refer to in the text is given, on account of (Ala), with T$ = 0, by the equation 

@-G) - Tc[ar@mbc = OO(O). (-45) 
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